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We use the Smaller ALignment Index (SALI) method of chaos detection, to study the global
dynamics of conservative dynamical systems described by differential or difference equations. In
particular, we consider the well–known 2–dimensional standard map and autonomous Hamiltonian
systems of 2 and 3 degrees of freedom describing the motion of a star in models of barred galaxies.
The application of SALI helped us to compute rapidly and accurately the percentage of regular
and chaotic motion for particular values of the parameters of these systems. We were also able to
perform a computationally efficient determination of the dependence of these percentages on the
variation of various parameters of the studied models.
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1. Introduction

The qualitative distinction between chaotic and
regular motion in symplectic maps and in systems
of differential equations is a fundamental problem of
non–linear dynamics. This distinction is in general,
a non trivial task and it becomes more difficult as
the number of degrees of freedom increases. For this
reason, over the years, several methods distinguishing
regular from chaotic motion in conservative dynamical
systems have been proposed and applied, with varying
degrees of success.

One of the most efficient methods of chaos
detection is the computation of the so-called Smaller
ALignment Index (SALI) which was introduced in [1]
and has already been applied successfully to several
dynamical systems [1–18]. SALI has proved to be
a fast and reliable method which can distinguish
between regular and chaotic motion rapidly, reliably
and accurately. These characteristics make the index a
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perfectly suited tool for the study of global dynamics
of dynamical systems. For these reasons we use SALI
to study the behavior of two distinct dynamical
systems: the well–known 2–dimensional (2D) standard
map [19] and Hamiltonian systems of 2 (2D) and 3
(3D) degrees of freedom, describing the motion of stars
in models of barred galaxies. In the present paper, we
present some preliminary results of our studies.

The paper is organized as follows: In Section 2
we recall the definition of SALI explaining also its
behavior for regular and chaotic orbits. In Section 3 we
use SALI for computing the fraction of chaotic orbits
in the case of the standard map, while in Section 4 the
results of an analogous study for Hamiltonian systems
of barred galaxies are presented. Finally, in Section 5
we present our conclusions.

2. The Smaller Alignment Index
(SALI)

Let us consider a l - dimensional phase space of a
conservative dynamical system, which could be a 2M -
dimensional symplectic map or a Hamiltonian flow
of N degrees of freedom, with l = 2N . We consider
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also an orbit in this space with initial condition
S(0) = (x1(0), x2(0), ..., xl(0)) and two deviation
vectors V1(0) = (dx11(0), dx12(0), ..., dx1l(0)) and
V2(0) = (dx21(0), dx22(0), ..., dx2l(0)), from the initial
point S(0).

For the computation of the SALI of a given orbit,
one has to follow the time evolution of the orbit itself
and also of two deviation vectors which initially point
in two different directions. The evolution of an orbit
of a map F is described by the discrete-time equations
of the map:

S(n + 1) = F (S(n)), (1)

where S(n) = (x1(n), x2(n), ..., xl(n)), represents the
orbit’s coordinates at the n-th iteration. The evolution
of the deviation vectors V1(n), V2(n), in this case, is
given by the equations of the tangent map:

V (n + 1) = DF (S(n)) · V (n). (2)

In the case of Hamiltonian flows the evolution of an
orbit is given by the Hamilton’s equation of motion:

dS(t)
dt

= F (S(t)), (3)

where F is a set of n-functions (F1, F2, ..., Fn), while
the corresponding evolution of the deviation vectors
V1(t), V2(t), is given by the variational equations:

dV (t)
dt

= DF (S(t)) · V (t) . (4)

We note that in (2) and (4) DF denotes the Jacobian
matrix of equations (1) and (3) respectively, evaluated
at the points of the orbit under study.

At every time step (or iteration) the two
deviation vectors V1(t) and V2(t) are normalized with
norm equal to 1 and the SALI is then computed as:

SALI(t) = min

{∥∥∥∥
V1(t)
‖V1(t)‖ +

V2(t)
‖V2(t)‖

∥∥∥∥ ,

∥∥∥∥
V1(t)
‖V1(t)‖ −

V2(t)
‖V2(t)‖

∥∥∥∥
}

, (5)

where ‖ · ‖ denotes the usual Euclidean norm and t is
the continuous or discrete time.

SALI has a completely different behavior for
regular and chaotic orbits and this allows us to clearly
distinguish between them. In the case of Hamiltonian
flows or 2M–dimensional symplectic maps with 2M >
2, the SALI fluctuates around a non-zero value for
regular orbits, while it tends exponentially to zero
for chaotic orbits [1, 4, 5], following a rate which
depends on the difference of the two largest Lyapunov

Exponents [6]. Thus, in 2D and 3D Hamiltonian
systems the distinction between ordered and chaotic
motion is easily done. On the other hand, in the
case of 2D maps the SALI tends to zero both for
regular and for chaotic orbits, following however
completely different time rates, which again allows us
to distinguish between the two cases [1].

3. Global dynamics of 2D
Standard map

As a simple 2D map which exhibits regular
and chaotic behavior, we consider the well–known
standard map [19] having the form

xn+1 = xn + yn+1

yn+1 = yn + K
2π sin(2πxn) (mod 1) , (6)

where K is the so–called non–linear parameter of the
system.

Before studying the global dynamics of map
(6) let us look in more detail the behavior of SALI
for regular and chaotic orbits of a 2D map. In the
case of a chaotic orbit any two deviation vectors will
be aligned to the direction defined by the largest
Lyapunov exponent L1, and consequently SALI tends
to zero following an exponential decay of the form
SALI ∝ e−2L1n, with n being the number of iterations
[6]. In the case of regular orbits any two deviation
vectors tend to fall on the tangent space of the torus on
which the motion lies [1, 4, 7]. For a 2D map this torus
is an 1–dimensional invariant curve, whose tangent
space is also 1–dimensional and consequently any two
deviation vectors will become aligned. Thus, even in
the case of regular in 2D maps SALI tends to zero.
This decay follows a power law [1] having the form
SALI ∝ 1/n2 [7].

In figure 1 we see the different behavior of
SALI for regular and chaotic orbits of the standard
map (6). It is exactly this different behavior of the
index that allows us to use SALI for a fast a clear
distinction between regions of chaos and order in the
2–dimensional phase space of the standard map. From
the results of figure 1 and the theoretical predictions
for the evolution of SALI we see that after n = 500
iterations the value of SALI of a regular orbit becomes
of the order of 10−6, while for a chaotic orbit SALI
has already reached extremely small values. Thus,
the percentage of chaotic orbits for a given value
of K can be computed as follows: We follow the
evolution of orbits whose initial conditions lie on a
2–dimensional grid of 1000 × 1000 equally spaced
points on the (xn, yn) plane and register for each
orbit the value of SALI after n = 500 iterations. All
orbits having values of SALI significantly smaller than
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FIG. 1. The evolution of SALI (solid lines) for a) the
chaotic orbit with initial condition x0 = 0.2, y0 = 0.2
and b) the regular orbit with initial condition x0 = 0.4,
y0 = 0.8 of the standard map (6) for K = 2, with respect
to the number of iterations n. Note the different scales of
the horizontal axis. The Lyapunov exponent of the chaotic
orbit is L1 ≈ 0.438. Dashed curves in panels a) and b)
correspond to functions proportional to e−2L1n and 1/n2

respectively. It is evident that the theoretical predictions
for the evolution of SALI describe very well the numerical
data.

10−6 (which correspond to the value SALI reaches
after 500 iterations in the case of regular orbits),
are characterized as chaotic. In practice as a good
threshold for this distinction we consider the value
10−8. Thus, all orbits having SALI ≤ 10−8 after
n = 500 iterations are characterized as chaotic, while
all other orbits are considered as non–chaotic.

In figure 2a) we present the outcome of this
procedure for K = 2. Each initial condition is colored
according to the color scale seen at the right side of
the panel. So, chaotic orbits, having SALI ≤ 10−8 are
colored black, while light gray color corresponds to
regular orbits having high values of SALI. Thus, in
figure 2a) we can clearly identify even tiny regions of
regular motion which are not easily seen in phase space
portraits of the map (figure 2b)). Using the above–

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
a)

SALI

 

 

y

x

1E-18

2.000

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
b)

 

 

y

x

FIG. 2. a) Regions of different values of SALI after n = 500
iterations of map (6) for K = 2. b) Phase space portrait
of map (6) for the same value of K.

described method we were able to compute very fast
and accurately the percentages of regular motion for
large values of parameter K. In figure 3a) we plot

the percentage of regular orbits for 180 ≤ K ≤ 200
where K varies with a step δK = 0.001. A blow-
up of the pick appearing close to K = 188 is seen
in figure 3b). In order to accelerate the numerical
computation we applied the following technique: For
each orbit we compute its SALI value at n = 500,
keeping also track of squares on the (x, y) plane that
the orbit visits in its evolution. Then, we attribute
this SALI value to all these squares. In this way we
gain considerably in computational time, since it is
not necessary to perform the same computation for
the total number of the initial conditions. For each
value of K a grid of 1000×1000 initial conditions were
used, allowing us to detect extremely tiny regions of
regular motion (note that the percentages of regular
orbits in figure 3 remain always less than 0.0015%!).
From the results of figure 3 we see a periodicity of
period 2π in the appearance of island of stability
as K varies, in accordance to the results presented
in [20]. In our study we were able to reproduce the
results obtained in [20] but with considerably less
computational effort. For example, for K = 2 instead
of using all the 106 initial conditions of the 1000×1000
grid, computing the evolution of only 12425 initial
conditions up to n = 500 iterations was sufficient for
characterazing the total 106 points. Thus, for K = 2
we were able to compute the percentage of regular
orbits on a 1000×1000 grid mesh by computation only
3×500×12425 ≈ 2·107 iterations of the map (6) and its
tangent map, instead for the 5 · 109 iterations needed
for obtaining the same result in [20]. In particular for
the computation of the data of figure 3 we needed only
27 hours of CPU time on an Athlon 64bit, 3.2Ghz PC.

4. Applications to 2D and 3D
models of barred galaxies

4.1. The model

A 3D rotating model of a barred galaxy can be
described by the Hamiltonian function:

H =
1
2
(p2

x +p2
y +p2

z)+V (x, y, z)−Ωb(xpy−ypx). (7)

The bar rotates around its z-axis, while the x-axis
is along the major axis and the y-axis is along
the intermediate axis. The px, py and pz are the
canonically conjugate momenta. Finally, V is the
potential, Ωb represents the pattern speed of the bar
and H is the total energy of the system.

The potential V of our model consists of three
components:
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1. A disc, represented by a Miyamoto disc [21]:

VD = − GMD√
x2 + y2 + (A +

√
z2 + B2)2

, (8)

where MD is the total mass of the disc, A and B
are the horizontal and vertical scalelengths, and
G is the gravitational constant.

2. A bulge which is modeled by a Plummer sphere
with the potential:

VS = − GMS√
x2 + y2 + z2 + ε2s

, (9)

where εs is the scalelength of the bulge and MS

is its total mass.

3. A triaxial Ferrers bar, the density ρ(x) of which
is:

ρ(x) =
{

ρc(1−m2)2 ,m < 1
0 ,m ≥ 1

, (10)

where ρc = 105
32π

GMB

abc the central density, MB is
the total mass of the bar and

m2 =
x2

a2
+

y2

b2
+

z2

c2
, a > b > c > 0, (11)

with a, b and c are the semi-axes and MB the
mass of the bar component. The corresponding
potential is:

VB = −πGabc
ρc

n + 1

∫ ∞

λ

du

∆(u)
(1−m2(u))n+1, (12)

where

m2(u) =
x2

a2 + u
+

y2

b2 + u
+

z2

c2 + u
(13)

and

∆2(u) = (a2 + u)(b2 + u)(c2 + u) (14)

The corresponding forces are given analytically
in [22].

This model has been used extensively for orbital
studies [23–27].

4.2. Numerical results

We first applied the SALI method to the 2D bar
potential resulting from the restriction of our study
on the z = pz = 0 subspace of the whole phase space
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FIG. 3. a) Percentages of regular orbits of map (6) as a
function of the nonlinear parameter K ∈ [180, 200], b) A
zoom of panel a) in the region of K ∈ (188.44, 188.55).
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FIG. 4. a) Poincaré surface of section for the 2D Ferrers’
model in (y, py) - plane for H = −0.360, b) The variation
of the SALI value for initial conditions chosen on the line
y = 0 of the corresponding PSS of panel a).

of the system. It can be easily seen that, due to the
symmetries of Hamiltonian (7), orbits starting with
z = pz = 0 remain for all time on the (x, y) plane.
In this case, the Hamiltonian function governing the
motion is derived by setting z = pz = 0 to equations
(7)–(14) and the corresponding Poincaré Surface of
Section (PSS) is 2–dimensional and can be easily
visualized.

As we have already mentioned, in 2D
Hamiltonian systems SALI tends exponentially
to zero for chaotic orbits, while it fluctuates around
a positive number for regular orbits. In figure 4a)
we present the PSS (plane (y, py)) of the system for
H = −0.360, which exhibits both regular and chaotic
regions. By choosing initial conditions on the line
py = 0 of the PSS and calculating their SALI values
we were able to detect very small regions of stability
that can not be visualized easily on the PSS. We plot
the corresponding values of the SALI in figure 4b).
The values of the SALI tend to zero (≈ 10−16), for
the initial conditions chosen inside the chaotic regions
of the PSS, contrary to the initials conditions inside
the stability islands whose SALI values retain large
positive values. Repeating this procedure for initial
conditions on the whole (y, py) plane, for several
values of the energy, we were able to follow the
change of the fraction of chaotic and regular orbits in
the phase space as the value of H varies.
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FIG. 5. Comparison of the percentages of chaotic orbits
for the main model, a model with twice the length of the
short axis (2C - version) and a model with twice the bar
mass (2GMB - version). The initial conditions in the plane
(x, py, z) with (y, px, pz) = (0, 0, 0)

We have also studied the full 3D model, as
well as other models with different bar mass and
different values of the semi-minor axis c. In each
case we considered two sets of initial conditions. The
first set includes orbits with initial conditions in the
plane (x, py, z) with (y, px, pz) = (0, 0, 0) and the
second one, orbits with initial conditions in the plane
(x, py, pz) with (y, z, px) = (0, 0, 0). By comparing
the results, we found that the increase of the bar
mass causes more chaotic behavior for both sets of
initial conditions. In figure 5 we present the change of
percentages of the chaotic orbits as the parameters
vary for the first set of initial conditions (similar
results where found for the second one as well). These
findings are in accordance to the results obtained
in [28] for the 2D case. On the other hand, it was
obvious that when the bar is thicker, i.e. the length
of the z-axis larger, the system becomes less chaotic
[12]. Finally, we calculated the percentages of chaotic
and regular orbits for different values of the pattern
speed Ωb. From the orientation of periodic orbits,
Contopoulos [29] showed that bars have to end before
corotation, i.e. that rL > a, where rL the Lagrangian,
or corotation, radius. Comparing the shape of the
observed dust lanes along the leading edges of bars
to that of the shock loci in hydrodynamic simulations
of gas flow in barred galaxy potentials, Athanassoula
[30, 31] was able to set both a lower and an upper limit
to corotation radius, namely rL = (1.2 ± 0.2)a. This
restricts the range of possible values of the pattern
speed between a high value that corresponds to the
Lagrangian radius rL = 1.4a and a low value that
corresponds to rL = 1.0a. Using the extremes of this

range, we investigated how the pattern speed of the
bar affects the dynamics the system and found that
the percentage of regular orbits is greater in slow bars
[17].

5. Conclusions

In this paper, we applied the SALI method
to symplectic 2 dimensional maps and to Ferrers
barred galaxy models of 2 and 3 degrees of freedom.
We presented and discussed our results comparing
the SALI index with traditional methods, such as
the PSS method for the 2 degrees of freedom, and
showed its effectiveness. We used this index for the
derivation of more detailed and refined information
choosing initial conditions on a plane of a PSS of the
2D map, especially for small stability islands inside
big chaotic seas. This permits an easier and more
accurate verification of the appearance of islands as
the nonlinearity parameter varies. We also calculated
percentages of chaotic and regular orbits and the way
they change with the main model parameters, for the 3
degrees of freedom case. In more detail, we calculated
percentages of chaotic and ordered trajectories, as
some important parameters (as the mass, the length
of the short z-axis and the pattern speed of the bar)
vary in the initial basic model.
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